Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Dairy Sci ; 104(2): 1811-1822, 2021 Feb.
Article En | MEDLINE | ID: mdl-33246616

Our objective was to evaluate the lactational responses of dairy cows to methionine provided from 2 ruminally protected sources of methionine activity. Twenty-one Holstein dairy cows [11 primiparous (634 kg of body weight, 140 d in milk) and 10 second-parity (670 kg of body weight, 142 d in milk)] were assigned to a treatment sequence in 4 replicated 5 × 5 Latin squares plus 1 cow, with 14-d periods. Treatments were as follows: control; 7.5 or 15 g/d of a ruminally protected product of 2-hydoxy-4-methylthio-butyric acid (NTP-1401; Novus International Inc., St. Charles, MO); or 7.5 or 15 g/d of a ruminally protected dl-methionine product (Smartamine M; Adisseo, Alpharetta, GA). The diet was predicted to meet metabolizable protein and energy requirements. Diets contained 16.1% crude protein, and the control diet was predicted to be deficient in metabolizable methionine (1.85% of metabolizable protein) but sufficient in lysine (6.8% of metabolizable protein). Feed intake and milk yield were measured on d 11 to 14. Blood was collected on d 14. Dry matter intake, milk yield, energy-corrected milk, milk fat yield and percentage, and efficiencies of milk and energy-corrected milk yield were not affected by treatment. Milk protein percentage and milk protein yield increased linearly with supplementation, without differences between methionine sources or interactions between source and level. Linear regressions of milk protein percentage and milk protein yield against supplement amount within source led to slope ratios (NTP-1401:Smartamine M) of 95% for protein percentage and 84% for protein yield, with no differences between sources for increasing milk protein. Plasma methionine concentrations were increased linearly by methionine supplementation; the increase was greater for Smartamine M than for NTP-1401. Plasma d-methionine was increased only by Smartamine M. Plasma 2-hydoxy-4-methylthio-butyric acid was increased only by NTP-1401. Our data demonstrated that supplementation with these methionine sources can improve milk protein percentage and yield, and the 2 methionine sources did not differ in their effect on lactation performance or milk composition.


Cattle/metabolism , Methionine/pharmacokinetics , Rumen/metabolism , Animal Feed/analysis , Animals , Biological Availability , Diet/veterinary , Dietary Proteins/administration & dosage , Dietary Supplements , Female , Lactation/physiology , Lysine/administration & dosage , Methionine/administration & dosage , Methionine/metabolism , Milk/chemistry , Milk/metabolism , Milk Proteins/analysis , Milk Proteins/metabolism , Nutritional Requirements , Parity , Pregnancy
2.
J Dairy Sci ; 97(7): 4464-70, 2014 Jul.
Article En | MEDLINE | ID: mdl-24792809

Recent studies have observed positive effects of both sucrose and exogenous amylase on the productivity of dairy cattle. Our objective was to evaluate direct effects and interactions of amylase and sucrose on dry matter intake (DMI), milk production, and milk components. Forty-eight multiparous Holstein cows between 70 and 130 d in milk were randomly assigned to each of 4 pens (12 cows/pen). Pens were randomly assigned to treatment sequence in a 4 × 4 Latin square design, balanced for carryover effects. Treatment periods were 28 d, with 24 d for diet adaptation and 4d for sample and data collection. The treatments were a control diet (36% NDF and 21% starch), the control diet with amylase [0.5 g/kg of DM; Ronozyme RumiStar 600 (CT); DSM Nutritional Products Ltd., Basel, Switzerland], a diet with sucrose replacing corn grain at 2% of DM, and the sucrose diet with amylase (0.5 g/kg of DM). All data were analyzed with mixed models, including the fixed effects of sugar, amylase, and their interaction, and the random effects of period and pen. Milk data included the random effects of cow nested within pen and pen × period to provide the error term for the pen-level analysis. Dry matter intake was not affected by treatments. Milk yield and milk composition were not altered by the inclusion of sucrose or amylase; however, a tendency for an amylase × sucrose interaction was observed for milk protein content, reflecting slightly lower milk protein concentrations for amylase and sucrose treatments (3.00 and 2.99 ± 0.03%) compared with the control and amylase + sucrose treatments (3.02 and 3.03 ± 0.03%). Solids-corrected and fat-corrected milk yields were not significantly altered by treatment, although the direct effect of amylase approached significance for both variables, suggesting possible small increases with amylase supplementation (~0.5 kg/d). Feed efficiency (energy-corrected milk divided by dry matter intake) numerically increased with either amylase (1.57 ± 0.12) or sucrose (1.60 ± 0.12) treatment, but the combination of the 2 resulted in feed efficiency similar to the control treatment (both 1.50 ± 0.12). The inclusion of amylase or sucrose did not affect DMI, productivity, or feed efficiency in mid-lactation cows fed low-starch, high-fiber diets.


Amylases/administration & dosage , Animal Feed/analysis , Cattle/physiology , Diet/veterinary , Starch/administration & dosage , Sucrose/administration & dosage , Animals , Dietary Supplements , Female , Lactation , Milk/metabolism , Milk Proteins/analysis
3.
J Dairy Sci ; 97(6): 3860-5, 2014.
Article En | MEDLINE | ID: mdl-24746128

Previous research has shown that replacing up to 5% [of dietary dry matter (DM)] corn with cane molasses can partially alleviate milk fat depression when cows are fed high-concentrate, low-fiber rations containing dried distillers grains with solubles. The primary objective of this study was to determine whether dietary molasses alters milk fatty acid (FA) profile or improves solids-corrected milk yield in the context of a more typical lactation diet. A secondary objective was to assess production responses to increasing rumen-degradable protein supply when molasses was fed. Twelve primiparous and 28 multiparous Holstein cows (196 ± 39 d in milk) were blocked by parity and assigned to 4 pens. Pens were randomly allocated to treatment sequence in a 4 × 4 Latin square design, balanced for carryover effects. Treatment periods were 21 d, with 17 d for diet adaptation and 4 d for sample and data collection. Treatments were a control diet, providing 20% dried distillers grains with solubles (DM basis), 35% neutral detergent fiber, 30% starch, and 5% ether extract; a diet with 4.4% cane molasses replacing a portion of the corn grain; a diet with 2.9% molasses supplement containing 32% crude protein on a DM basis; and a diet with 5.8% (DM basis) molasses supplement. Animal-level data were analyzed using mixed models, including the fixed effect of treatment and the random effects of period, pen, period × pen interaction, and cow within pen to recognize pen as the experimental unit. Diets did not alter DM intake, milk production, milk component concentration or yield, feed efficiency (DM intake/milk yield), body weight change, or milk somatic cell count. Milk stearic acid content was increased by the diet containing 5.8% molasses supplement compared with the control diet and the diet containing 2.9% molasses supplement, but the magnitude of the effect was small (12.27, 11.75, and 11.69 ± 0.29 g/100g of FA). Production data revealed a dramatic effect of period on milk fat content and yield. Milk fat content decreased during the course of the experiment (least squares means = 3.16, 2.81, 2.93, and 2.64 ± 0.09% for periods 1 to 4, respectively), as did milk fat yield (1.20, 1.03, 0.98, and 0.79 ± 0.05 kg/d). Exchanging molasses-based products for corn at 2.9 to 5.8% of dietary DM did not influence productivity and had minute effects on milk FA profile. The limited responses in this study may have been influenced by dietary unsaturated FA content or the advancing stage of lactation of cows in the study.


Animal Nutritional Physiological Phenomena , Fatty Acids/chemistry , Milk/chemistry , Milk/metabolism , Molasses , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Dietary Fiber/metabolism , Dietary Proteins/metabolism , Dietary Supplements/analysis , Digestion , Fatty Acids/metabolism , Female , Lactation , Random Allocation , Rumen/physiology , Zea mays/metabolism
4.
J Dairy Sci ; 97(6): 3822-31, 2014.
Article En | MEDLINE | ID: mdl-24731640

The objective of this study was to evaluate effects of chromium propionate (CrPr), rumen-protected lysine and methionine (RPLM), or both on metabolism, neutrophil function, and adipocyte size in lactating dairy cows (38 ± 15 d in milk). Forty-eight individually fed Holstein cows (21 primiparous, 27 multiparous) were stratified by calving date in 12 blocks and randomly assigned to 1 of 4 treatments within block. Treatments were control, CrPr (8 mg/d of Cr, KemTRACE brand chromium propionate 0.04%, Kemin Industries Inc., Des Moines, IA), RPLM (10 g/d lysine and 5 g/d methionine intestinally available, from LysiPEARL and MetiPEARL, Kemin Industries Inc.), or CrPr plus RPLM. Treatments were fed for 35 d; blood plasma samples were collected ond 21 and 35 of treatment, and blood neutrophils were isolated from 24 cows for analysis of tumor necrosis factor α (TNFα) and interleukin 1ß (IL-1ß) transcript abundance in the basal state and after 12h of lipopolysaccharide (LPS) activation. Tailhead subcutaneous adipose tissue samples were collected ond 35 for measurement of adipocyte size. Plasma glucose, nonesterified fatty acids, and glucagon concentrations were unaffected by treatments, whereas plasma insulin concentration was increased by RPLM. Basal TNFα transcript abundance in neutrophils was not affected by treatment, but basal IL-1ß transcript abundance was decreased by RPLM and tended to be increased by CrPr. After LPS activation, CrPr increased neutrophil TNFα transcript abundance. In addition, RPLM×parity interactions were detected for both TNFα and IL-1ß abundance after LPS activation, reflecting enhanced responses in primiparous cows and attenuated responses in multiparous cows supplemented with RPLM. Adipocyte size was not affected by treatment. Supplemental CrPr and RPLM had minimal effects on metabolism when fed for 35 d near peak lactation but may modulate innate immune function in lactating dairy cows.


Adipocytes/drug effects , Lysine/administration & dosage , Methionine/administration & dosage , Neutrophil Activation/drug effects , Propionates/administration & dosage , Rumen/drug effects , Adipocytes/cytology , Adiponectin/blood , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , Cattle , Diet/veterinary , Dietary Supplements , Fatty Acids, Nonesterified/blood , Female , Glucagon/blood , Insulin/blood , Interleukin-1beta/metabolism , Lactation , Leptin/blood , Lysine/blood , Methionine/blood , Rumen/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
J Dairy Sci ; 97(6): 3815-21, 2014.
Article En | MEDLINE | ID: mdl-24731641

Chromium (Cr) feeding in early lactation increased milk production in some studies, but responses to dietary Cr during peak lactation have not been evaluated. Furthermore, interactions of essential amino acids (AA) and Cr have not been explored. Our objective was to evaluate responses to CrPr (KemTRACE chromium propionate 0.04%, Kemin Industries Inc., Des Moines, IA) and rumen-protected Lys (LysiPEARL, Kemin Industries Inc.) and Met (MetiPEARL, Kemin Industries Inc.) and their interaction in peak-lactation cows. Forty-eight individually fed Holstein cows (21 primiparous, 27 multiparous, 38 ± 15 d in milk) were stratified by calving date in 12 blocks and randomly assigned to 1 of 4 treatments within block. Treatments were control, CrPr (8 mg/d of Cr), RPLM (10 g/d of Lys and 5 g/d of Met, intestinally available), or CrPr plus RPLM. Treatments were premixed with ground corn and top-dressed at 200 g/d for 35 d. Diets consisted of corn silage, alfalfa hay, and concentrates, providing approximately 17% crude protein, 31% neutral detergent fiber, and 40% nonfiber carbohydrates. Dry matter intake (DMI) significantly increased with the inclusion of CrPr (22.2 vs. 20.8 ± 0.67 kg/d), and energy-corrected milk (ECM) yield tended to increase. In addition, CrPr increased milk protein yield and tended to increase DMI in primiparous cows but not in multiparous cows. A CrPr×week interaction was detected for milk lactose content, which was increased by CrPr during wk 1 only (4.99 vs. 4.88 ± 0.036%). As a proportion of plasma AA, lysine increased and methionine tended to increase in response to RPLM, but the inclusion of RPLM decreased N efficiency (milk protein N:N intake). Digestible energy intake, gross energy digestibility, and energy balance were not affected by treatments. We observed no treatment effects on feed efficiency or changes in body weight or body condition score. In summary, feeding CrPr increased DMI and tended to increase ECM in cows fed for 5 wk near peak lactation, with primiparous cows showing greater responses in DMI and milk protein yield than multiparous cows.


Diet/veterinary , Lysine/administration & dosage , Methionine/administration & dosage , Propionates/administration & dosage , Rumen/drug effects , Amino Acids/blood , Animals , Body Weight , Cattle , Dietary Fiber/administration & dosage , Dietary Supplements , Female , Lactation , Lactose/analysis , Lysine/blood , Methionine/blood , Milk/chemistry , Milk Proteins/analysis , Rumen/metabolism , Silage/analysis , Zea mays
...